

Simple Orifice and Weir Outperforms Thirsty Duck Control Device

Abstract:

The "Thirsty Duck" (TD) company manufactures a buoyant flow control device and makes claims that the device reduces the volume of stormwater storage for stormwater detention systems. Claims of up to 50% savings are made on their web site and literature.

Our careful study belies such claims and we show here that a standard orifice and weir outlet control performs even better than the Thirsty Duck device.

Method:

The Thirsty Duck website provides a sample Rating Curve for their ER-100 Series device. The curve range is limited from 0 to 15.5 cubic feet per second. We reservoir-routed a random SCS Type 2 hydrograph within the lower and upper limits of the rating curve and determined the outflow peak discharge and the total storage volume. Next, in the same detention basin, we routed the same inflow hydrograph using a <u>standard orifice and weir</u> whose combination yielded the same outflow peak discharge as the Thirsty Duck (13.75 cfs).

The Army Corps HEC-1 computer software is used for the routing and the HEC-1 output file and all other data needed to reproduce our results are included in this paper.

Results:

Name	100 Year Storm (cfs)
INFLOW (Random Hydrograph)	15.439
DET-TD (Thirsty Duck)	13.748
DET-OW (Simple Orifice and Weir)	13.748

Storage and Flow Values from the HEC-1 Program

PLAN	1		INITIAL	VALUE	SPILLWAY CRE	EST TOP	OF DAM		
		ELEVATION 100.50		105.50 105.50		105.50			
		STORAGE	.00		.26		.26		
		OUTFLOW		.00	15.13		15.13		
	RATIO	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF	
	OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE	
	PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS	
	12.00	104.57	.00	.164	13.75	.00	12.48	.00	Thirsty Duck
		SUMMARY	OF DAM OVER	TOPPING/BR	REACH ANALYSIS	S FOR STATI	ON DET-OW		
PLAN	1		INITIAL	173 1 110	SPILLWAY CRE		OF DAM		
PLAN	1	DI DIZA MION							
		ELEVATION	100	.50	101.00 106.00				
		STORAGE		.00	.00		.31		
		OUTFLOW		.00	1.94		21.08		
	RATIO	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	DURATION	TIME OF	TIME OF	
	OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE	
	PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS	
	12.00	104.43	.00	.152	13.75	.00	12.48	.00	Orifice/Weir

Table of Resulting Detention Storage (from HEC-1)

Device	Peak Discharge (cfs)	Storage Volume (ac-ft)	Storage Volume (cubic feet)
Thirsty Duck	13.75	0.164	7,144
Simple Orifice Weir	13.75	0.152	6,621

Discussion:

The standard orifice and weir outlet control structure provides about 8% less storage than the Thirsty Duck device for the same peak outflow for a randomly chosen inflow hydrograph.

We provide, herein, a graph of the routings taken from HEC-1 for both cases.

We also provide a Table of the volume of runoff and outlet hydrographs to show that inflow and outflow volumes are conserved in both cases, thereby, underscoring the reliability of the storage routings in this report.

Conclusion:

Based on this evidence, the Thirsty Duck device provides no benefit in reducing stormwater storage over a simple orifice and weir. In fact, a simple weir and orifice outperforms the Thirsty Duck since the weir and orifice result in about 8% less detention storage.

Submitted by:

Ralph G. Mastromonaco, PE JULY 9, 2011

References:

Web Sites:

http://www.thirsty-duck.com/

Excel File ER100 SERIES RATING CURVE GENERATION V12.xls from thirsty Duck Web Site

Proprietary HEC-1 Software: http://www.hec-1.com/

HEC-1 input file used in this report http://www.hec-1.com/THIRSTY DUCK kp.zip

Free HEC-1 Software: http://www.hec.usace.army.mil/software/legacysoftware/hec1.htm

Our Website: http://www.extentionbasin.com

Input Data to HEC-1

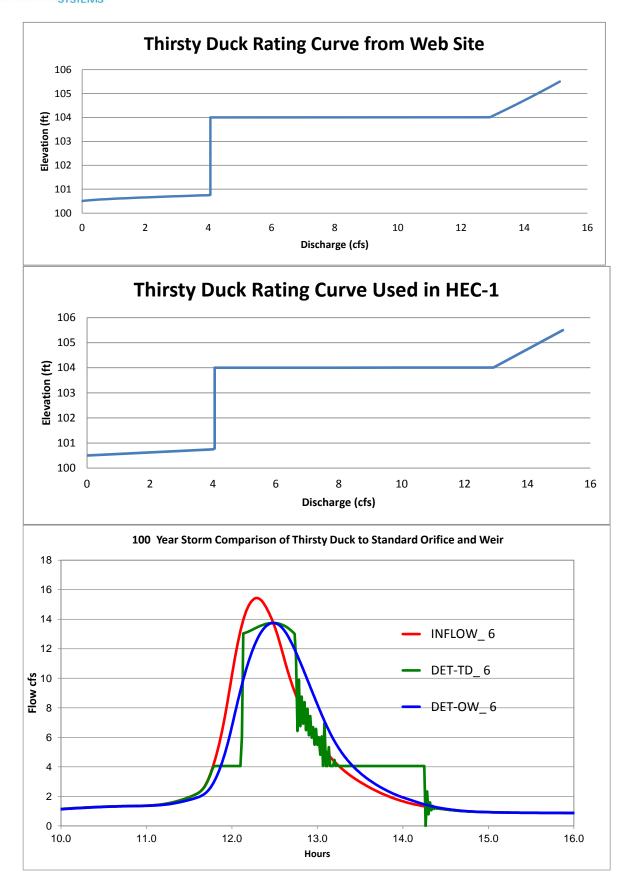
Station INFLOW

Basin Area .00391 Sq. Miles Basin Area 2.5024 Acres **Runoff Curve Number 98** Initial Abstraction computed internally. Lag Time 0.6 Hrs. Time of Concentration 1 Hrs.

Station DET-TD

Starting Elevation of Flow 100.5 Surface Area Records of Reservoir / Retention Basin: 0 / 0.02 / 0.03 / 0.042 / 0.07 / 0.1 / 0.12 / 0.14 / 0.16 / 0.18 Elevation Records of Reservoir / Retention Basin: 100.5 / 101 / 102 / 103 / 104 / 105 / 106 / 112 / 113 / 114 Flow Records of Reservoir / Retention Basin: 0 / 4 / 4.06 / 4.06 / 4.06 / 5 / 8 / 10 / 12.92 / 15.13 Elevation Records of Reservoir / Retention Basin: 100.5 / 100.75 / 100.78 / 103.75 / 104 / 104.001 / 104.005 / 104.007 / 104.01 / 105.5 High Level Crest Spillway Length 5.00 Feet High Level Crest Spillway Elevation 105.50 Feet High Level Crest Spillway Coefficient 3.33

Station INFLOW Basin Area .00391 Sq. Miles Basin Area 2.5024 Acres Runoff Curve Number 98.00 Initial Abstraction computed internally. Lag Time .6 Hrs. Time of Concentration 1 Hrs.


High Level Crest Spillway Exponent 1.50

Station DET-OW

Starting Elevation of Flow 100.5 Surface Area Records of Reservoir / Retention Basin: 0 / 0.02 / 0.03 / 0.042 / 0.07 / 0.1 / 0.12 / 0.14 / 0.16 / 0.18 Elevation Records of Reservoir / Retention Basin: 100.5 / 101 / 102 / 103 / 104 / 105 / 106 / 112 / 113 / 114 Low Level Outlet Elevation 100.5 Feet Low Level Outlet Area 0.56 Square Feet Low Level Outlet Orifice Coefficient 0.61 Low Level Outlet Orifice Exponent 0.5 Spillway Length 0.3936 Feet Spillway Elevation 101 Feet Spillway Coefficient 3.33 Spillway Exponent 1.5 High Level Crest Spillway Length 0.2 Feet High Level Crest Spillway Elevation 106 Feet High Level Crest Spillway Coefficient 3.33 High Level Crest Spillway Exponent 1.5

Table of Hydrograph Volumes

ITEM	VOLUME (cubic feet)					
NAME	INFLOW1					
Volume (cf)	106,812.722 Inflow Hydrograph					
NAME	DET-TD Thirsty Duck					
Volume (cf)	107,380.301					
NAME	DET-OW Orifice / Weir					
Volume (cf)	107,798.893					


```
*********
  FLOOD HYDROGRAPH PACKAGE (HEC-1)
    JUN 1998 AND FEB 2010
        VERSION 4 1R
     RGMHEC2000 WWW.HEC-1.COM
* RUN DATE 09JUL11 TIME 09:45:26
*********
```

```
U.S. ARMY CORPS OF ENGINEERS
    HYDROLOGIC ENGINEERING CENTER
      609 SECOND STREET
DAVIS, CALIFORNIA 95616
       (916) 756-1104
*********
```

Х	X	XXXXXXX	XXXXX			X
Х	X	X	X	X		XX
Х	X	X	X			X
XXXXXXX		XXXX	X		XXXXX	X
Х	X	X	X			Х
Х	X	X	X	X		X
Х	X	XXXXXXX	XXXXX			XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

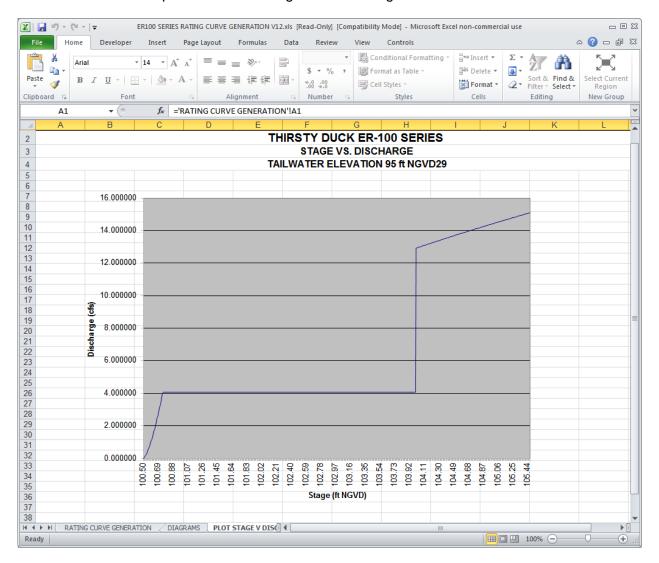
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
HEC-1 INPUT
                                                                                                           PAGE 1
LINE
              ID.....1....2....3....4....5....6....7....8....9....10
               ID EXTENTION BASIN SYSTEMS, INC. RALPH G. MASTROMONACO, PE
ID THIRSTY DUCK - SAMPLE RUN TO COMPARE WITH WEIR AND ORIFICE
               ID USE SCS TYPE 2 DISTRIBUTION FOR SELECTED STORM RAINFALLS
ID FILENAME THIRSTY_DUCK_KP.DAT
ID USE SCS LAG 100 YEAR STORM RANDOMLY CHOSEN TO MEET RANGE OF RATING CURVE
                *DIAGRAM
                                         Ο
               ΤТ
                                              2000
                  100 YR STORM (SARASOTA, FL)
               ΙD
  10
               IN
  12
               KΟ
  13
               KM WATERSHED DATA
  14
               PB
                   0.0013 0.0025 0.0038
                                             0.005 0.0063 0.0075 0.0088
                                                                                 0.01 0.0113 0.0125
  15
               PC
                             0.015 0.0163
                   0.0138
                                             0.0175 0.0188
                                                              0.0323
  17
                   0.0262
                            0.0274 0.0287
                                             0.0299 0.0311
                                                                      0.0335
                                                                              0.0347
                                                                                        0.036
                                                                                               0.0372
                            0.0396
                   0.0384
                                     0.0408
  19
                   0.0515
                            0.0529
                                    0.0544
                                             0.0559
                                                     0.0574
                                                              0.0588
                                                                      0.0603
                                                                               0.0618 0.0633
                                                                                                0.0648
  20
                   0.0662
                            0.0677
                                     0.0692
                                             0.0709
                                                                                                0.0806
  21
                   0.0823
                            0.0839
                                     0.0855
                                             0.0871 0.0888
                                                              0 0905
                                                                      0 0924
                                                                               0.0942
                                                                                        0 096
                                                                                                0.0978
  22
                            0.1014 0.1032
                   0.0996
                                              0.105 0.1069
                                                              0.1087
                                                                                      0.1149
                                                                      0.1105
                                                                               0.1124
                                                                                                0.1173
  23
                   0.1197
                            0.1222
                                     0.1246
                                                     0.1295
                                                              0.1319
  2.4
                    0.145
                            0.1486
                                    0.1529
                                             0.1571 0.1613
                                                              0.1655
                                                                      0.1697
                                                                                0.174
                                                                                        0.1784
                                                                                                 0.183
                   0.1876
                            0.1922
                                     0.1968
                                                     0.2796
0.7394
  2.6
                   0.2384
                            0.2465
                                    0.2563
                                             0.2676
                                                              0.2967
                                                                      0.3214
                                                                               0.5851
                                                                                       0.6355
                            0.7029
                   0.6848
                                      0.718
                                             0.7311
                                                                               0.7632
                                                                                        0.7698
                            0.7893 0.7946
0.824 0.827
  2.8
                   0.7828
                                             0.7981
                                                     0.8017
                                                              0.8052
                                                                      0.8088
                                                                               0.8121
                                                                                       0.8151
                                                                                                0.8181
                                                              0.8357
  29
                   0.8211
                                             0.8299
                                                     0.8328
                                                                      0.8385
                                                                               0.8414
                                                                                        0.8443
                                                                                                0.8472
                                             0.8588
  30
                   0.8501
                             0.853
                                     0.8559
                                                     0.8617
                                                              0.8645
                                                                               0.8703
  31
                   0.8788
                            0.8816
                                     0.8843
                                              0.887
                                                     0.8897
                                                              0.8925
                                                                      0.8952
                                                                               0.8979
                                                                                       0.9006
                                                                                                0.9034
  32
                                                     0.9152
                                                              0.9172
                    0.9061
                            0.9088
                                    0.9111
                                             0.9131
  33
                   0 9276
                            0.9298
                                     0 932
                                             0 9342
                                                     0.9363
                                                              0 9385
                                                                      0 9406
                                                                               0 9423
                                                                                        0 944
                                                                                                0 9457
  34
                   0.9474
                            0.9491
                                     0.9508
                                             0.9525
                                                     0.9542
                                                                       0.9576
                                                              0.9559
                                                                               0.9593
                                                                                        0.961
                                                                                                0.9627
                   0.964
0.9771
  35
                            0.9653
                                     0.9665
                                             0.9678
                                                     0.9691
                                                              0.9703
                                                                       0.9716
                                                                                0.973
                                                                                       0.9743
                                                                                                0.9757
                            0.9785
                                    0.9798
                                             0.9812 0.9825
  36
                                                              0.9837
                                                                      0.9849
                                                                               0.9862
                                                                                      0.9874
                                                                                                0.9886
  37
                   0.9897
                            0.9905
                                     0.9913
                                              0.992
                                                     0.9928
                                                              0.9936
                                                                      0.9944
  38
               PC
                     .9964 0.9968 0.9972 0.9976
                                                      0.998 0.9984 0.9988 0.9992 0.9996
                   .00391
  39
               ВΑ
  40
               T.S
                     0.6
               UD
  41
  42
                   DET-TD
  43
               ΚO
                   DETENTION BASIN USING THIRSTY DUCK OUTFLOW CURVE
                              ELEV 100.5
0.02 0.03
  4.5
               RS
  46
                                              0.042
                                                        0.07
                                                                         0.12
               SA
                                                                               112
                                                                       106
                                                                 105
5
  47
               SE
                    100.5
                               101
                                       102
                                               103
                                                        104
                                                                                          113
                                                                                                   114
                                              4.06
  48
                                      4.06
                                                        4.06
                                                                                   10
               SO
                    100.5 100.75 100.78
  49
                                             103.75
                                                         104 104.001 104.005 104.007 104.01
                    105.50
  50
               ST
                             5.00
                                      3.33
                    INFLOW
                   WATERSHED DATA
  52
               KM
  53
  54
55
               LS
                     .6
                             98.00
               UD
                   DET-OW
                                                          21
  57
               KΟ
                              ELEV
  59
               ΚM
                   DETENTION BASIN USING SIMPLE ORIFCE AND WEIR
                                      0.03
  60
                             0.02
                                             0.042
               SA
                    100.5
  61
               SE
                               101
                                       102
                                                103
                                                         104
                                                                 105
                                                                          106
                                                                                  112
                                                                                          113
                                                                                                   114
                              0.56
                                       0.61
  62
               SL
                     100.5
                                                0.5
                       101 0.3936
  64
               ST
                       106
                               0.2
                                       3.33
```

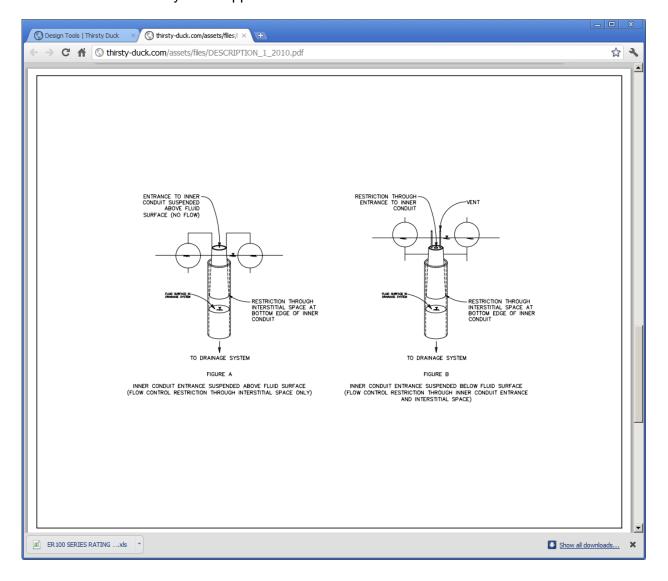
6 Simple Orifice and Weir Outperforms Thirsty Duck

```
Extention Basin
                 SCHEMATIC DIAGRAM OF STREAM NETWORK
INPUT
 LINE
            (V) ROUTING
                                  (--->) DIVERSION OR PUMP FLOW
            (.) CONNECTOR
                                  (<---) RETURN OF DIVERTED OR PUMPED FLOW
   11
            INFLOW
    42
            DET-TD
   51
                         TNFLOW
   56
                        DET-OW
 (***) RUNOFF ALSO COMPUTED AT THIS LOCATION
     FLOOD HYDROGRAPH PACKAGE (HEC-1)
                                                                                                      U.S. ARMY CORPS OF ENGINEERS
         JUN 1998 AND FEB 2010
VERSION 4.1R
                                                                                                      HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
         RGMHEC2000 WWW.HEC-1.COM
                                                                                                         DAVIS, CALIFORNIA 95616
   RUN DATE 09JUL11 TIME 09:45:26
                                                                                                             (916) 756-1104
                            EXTENTION BASIN SYSTEMS, INC. RALPH G. MASTROMONACO, PE THIRSTY DUCK - SAMPLE RUN TO COMPARE WITH WEIR AND ORIFICE
                               USE SCS TYPE 2 DISTRIBUTION FOR SELECTED STORM RAINFALLS
                            FILENAME THIRSTY DUCK KP.DAT USE SCS LAG 10\overline{0} YEAR STORM RANDOMLY CHOSEN TO MEET RANGE OF RATING CURVE
                  OUTPUT CONTROL VARIABLES
   6 IO
                                 5 PRINT CONTROL
5 PLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                         IPRNT
                        IPLOT
                           100 YR STORM (SARASOTA, FL)
                  HYDROGRAPH TIME DATA
                                        1 MINUTES IN COMPUTATION INTERVAL
                         NMIN
                                        0
                                           STARTING DATE
                                     0000 STARTING TIME
2000 NUMBER OF HYDROGRAPH ORDINATES
                        ITIME
                                   2
                                        0 ENDING DATE
919 ENDING TIME
                        NDDATE
                        NDTIME
                                     0919
                                        19
                                            CENTURY MARK
                    COMPUTATION INTERVAL
                         TOTAL TIME BASE 33.32 HOURS
           ENGLISH UNITS
                DRAINAGE AREA
                                       SQUARE MILES
                PRECIPITATION DEPTH
                                       INCHES
                LENGTH, ELEVATION
                                       FEET
                FLOW
                                       CUBIC FEET PER SECOND
                STORAGE VOLUME
                                       ACRE-FEET
                SURFACE AREA
                                       ACRES
                TEMPERATURE
                                       DEGREES FAHRENHEIT
                  MULTI-PLAN OPTION
                        NPLAN
                                         1 NUMBER OF PLANS
                  MULTI-RATIO OPTION
                      RATIOS OF PRECIPITATION
   ********
  11 KK
                  INFLOW
  12 KO
                  OUTPUT CONTROL VARIABLES
                                   5 PRINT CONTROL
                        IPRNT
                                            PLOT CONTROL
                                            HYDROGRAPH PLOT SCALE
                        OSCAL
                                            PUNCH COMPUTED HYDROGRAPH
                                        21
1
                                           SAVE HYDROGRAPH ON THIS UNIT
FIRST ORDINATE PUNCHED OR SAVED
                         TOTT
                        ISAV1
                        TSAV2
                                      2000 LAST ORDINATE PUNCHED OR SAVED
                                           TIME INTERVAL IN HOURS
                       TIMINT
                                      .017
   42 KK
                  DET-TD *
  43 KO
                  OUTPUT CONTROL VARIABLES
                                            PRINT CONTROL
                        TPLOT
                                           PLOT CONTROL
HYDROGRAPH PLOT SCALE
                        QSCAL
                        IPNCH
                                       0 PUNCH COMPUTED HYDROGRAPH
21 SAVE HYDROGRAPH ON THIS UNIT
                         IOUT
                        ISAV1
                                           FIRST ORDINATE PUNCHED OR SAVED
                                      2000
                                           LAST ORDINATE PUNCHED OR SAVED
                         ISAV2
                                           TIME INTERVAL IN HOURS
```

*** ***


```
56 KK
               DET-OW *
           ******
  57 KO
               OUTPUT CONTROL VARIABLES
                    IPRNT 5 PRINT CONTROL
IPLOT 5 PLOT CONTROL
                    QSCAL
                                 0. HYDROGRAPH PLOT SCALE
                    TPNCH
                                 0 PUNCH COMPUTED HYDROGRAPH
21 SAVE HYDROGRAPH ON THIS UNIT
                     IOUT
                                    FIRST ORDINATE PUNCHED OR SAVED
LAST ORDINATE PUNCHED OR SAVED
                    TSAV1
                               2000
                    ISAV2
                   TIMINT
                               .017 TIME INTERVAL IN HOURS
                PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
                                 FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES
                                                  TIME TO PEAK IN HOURS
                                                          RATIOS APPLIED TO PRECIPITATION
OPERATION
                STATION
                            AREA
                                     PLAN
                                                     RATIO 1
                                                       12.00
HYDROGRAPH AT
                              .004
                                                       15.44
                 INFLOW
                                          FLOW
                                       1
                                           TIME
                                                       12 28
ROUTED TO
                                                       13.75
                 DET-TD
                              .004
                                           FLOW
                                           TIME
                                                       12.48
                                       ** PEAK STAGES IN FEET **
                                       1 STAGE
                                                      104 57
                                           TIME
                                                       12.48
HYDROGRAPH AT
                 INFLOW
                                          FLOW
                              .004
                                                       15.44
                                           TIME.
                                                      12.28
ROUTED TO
                              .004
                                                       13.75
                 DET-OW
                                          FLOW
                                           TIME.
                                                      12.48
                                       ** PEAK STAGES IN FEET **
                                                   104.43
                                       1 STAGE
                                           TIME
                                                       12.48
     THIRSTY DUCK
                                       SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION DET-TD
                                               INITIAL VALUE
                                                                 SPILLWAY CREST
                                                                                    TOP OF DAM
     PLAN 1 ......
                                 ELEVATION
                                                  100.50
                                                                     105.50
                                                                                       105.50
                                 STORAGE
                                                     .00
                                                                         .26
                                                                                          .26
                                                                       15.13
                                                                                        15.13
                                 OUTFLOW
                                                      .00
                                            MAXIMUM
                                                       MIMIXAM
                                                                   MIMIXAM
                                                                              DURATION
                                                                                           TIME OF
                     RATTO
                               MIMIXAM
                                                                                                       TIME OF
                               RESERVOIR
                                                        STORAGE
                                                                   OUTFLOW
                                                                              OVER TOP
                                                                                         MAX OUTFLOW
                                                                                                       FATLURE
                       OF
                                             DEPTH
                      PMF
                               W S ELEV
                                            OVER DAM
                                                        AC-FT
                                                                               HOURS
                                                                                                        HOURS
                                                                     CES
                                                                                            HOURS
                                                           .164
                    12.00
                                104.57
                                                                    13.75
                                                                                 .00
                                                                                            12.48
                                               .00
                                                                                                          .00
     ORIFICE AND WEIR
                                       SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION DET-OW
     PLAN 1 .....
                                               INITIAL VALUE
                                                                 SPILLWAY CREST
                                                                                    TOP OF DAM
                                 ELEVATION
                                                  100.50
                                                                      101.00
                                                                                      106.00
                                                     .00
                                                                        .00
                                 STORAGE
                                 OUTFLOW
                                                      .00
                                                                        1.94
                                                                                        21.08
                      RATIO
                               MAXIMUM
                                            MAXIMUM
                                                        MAXIMUM MAXIMUM DURATION
                                                                                          TIME OF
                                                                                                       TIME OF
                               RESERVOIR
                                             DEPTH
                                                        STORAGE
                                                                  OUTFLOW
                                                                              OVER TOP
                                                                                        MAX OUTFLOW
                                                                                                       FAILURE
                      PMF
                                W.S.ELEV
                                            OVER DAM
                                                        AC-FT
                                                                    CFS
                                                                              HOURS
                                                                                            HOURS
                                                                                                        HOURS
                    12.00
                                104.43
                                                .00
                                                         .152
                                                                   13.75
                                                                                 .00
                                                                                            12.48
                                                                                                           .00
*** NORMAL END OF HEC-1 ***
(HIGHLIGHTING BY EDITOR)
```

Website Showing Claim of "Reduce stormwater pond size up to 50%"



Ralph G. Mastromonaco, PE

Website Downloaded Excel Spreadsheet showing ER-100 Rating Curve

Website Detail of Thirsty Duck Apparatus

